Short read alignment (using external tools)

Kasper Daniel Hansen khansen@jhsph.edu Brixen, 26 June 2011

Many slides are courtesy of Hector Corrada Bravo and Ben Langmead

Analyzing reads

TATGTCGCAGTATCTFT CGCAGTATCTG
TATGTCATGTCGCAGTATCTGTCTGTCT
CCGGACACCCTATAT GTCGCAGTATCTGTCT CTGTNN TATGTCGCAGTATCTT GTCGCAGTATCTGTNN

ACACCCTATGTGGCATCGCAGTATCTG
CCGGACACCCTATA AGXEGEATATCGCA
CCGGACACCCCTAGTAT TJATGTCGCAGTATCTG
CCGGACACCCTATA干GTCGCAGTATCTGTC
GTCGCAGTATCTGTNN
TGTCGCAGTATCTGTC

CCGGACACCCTATAT
|||||||||
ACACCCTATGTCGCA
\|\|\|\|\|
TGTCGCAGTATCTGTC
|l| |||
TAT--GTCGCAGTATCTG

Image source: http://ngm.nationalgeographic.com/your-shot/jigsaw-puzzles

JOHNS HOPKINS

Analyzing reads

Comparative
Image source: http://ngm.nationalgeographic.com/your-shot/jigsaw-puzzles

Comparative

Comparative
Image source: http://ngm.nationalgeographic.com/your-shot/jigsaw-puzzles

Comparative

Comparative

OHNS HOPKINS BLOOMBERG
BLO MBE HEALTH
SCHOOL of PUBLIC HEALTH

Comparative

TATGTCGCAGTATTCTTT CGCAGTATCTG
TATGTCATGTCGCAGTATCTG CTGTCT CCGGACACCCTATAT GJCGCAGTATCTGTCT CTGTNN Ch
TATGTCGCAGTATCTT GTCGCAGTATCTGTNN
ACACCCTATKGJCGCA ATGTCGCA
CCGGACACCCTATA
CCGGACACCCTATAT ©AJGTCGCAGTATCTG
CCGGACACCCT GTCGCAGTATCTGTNN

TGTCGCAGTATCTGTC

||||||||| ACACCCTATGTCGCA
|l||l| TGTCGCAGTATCTGTC
|l| ||
TAT--GTCGCAGTATCTG

Comparative

Comparative

TATGTCGCAGTATTCTT CGCAGTATCTG
TATGCTATGTCGCAGTATCTGTCTGTCT CCGGACACCCTATAT GJCGCAGTATCTGTCT CTGTNN ACACCCTATGTCGCA
TATGTCGCAGTATCTT GTCGCAGTATCTGTNN
ACACCCTATGTCCGICGCAGIATCTG
CCGGACACACCTATATATACGCAATGTCGCA
CCGGACACCCCAGTAT JAJGTCGCAGTATCTG
CCGGACACCCTATAFGTCGCAGTATCTGTC
GTCGCAGTATCTGTNN TGTCGCAGTATCTGTC $\quad \begin{aligned} & \text { TCCCC } \\ & \text { TACGA } \\ & \text { TACCCA } \\ & \text { CACTACG } \\ & \text { AGCCTGT }\end{aligned}$ CCGGACACCCTATAT
$||||||||\mid$
ACACCCTATGTCGCA
$|||||\mid$
TGTCGCAGTATCTGTC

TAT--GTCGCAGTATCTG

Comparative

JOHNS HOPKINS

Reference genome

Sample (true) genome

Reference genome

Read

JOHNS HOPKINS
BLOOMBERG
SCHOOL of PUBLLC HEALTH

Smith-Waterman

Aligning two sequences is a classic (and extremely important) problem in computational biology.

An 'efficient' solution is provided by the Smith-Waterman algorithm which produces the 'best' alignment under some statistical model.

It handles insertions and deletions elegantly (the default does not handle base qualities), but is too slow for short reads.
(Biostrings::pairwiseAlignment())

Smith-Waterman

Aligning d reads of length m to reference of length \mathbf{n} is $\mathrm{O}(\mathrm{dmn})$

```
Say:
m}=100\textrm{nt
dl=2 billion (2 < 109) reads
n=3 billion ( }3\times1\mp@subsup{0}{}{9}\mathrm{ ) nt }\approx\mathrm{ human
```

Total of $\left(6 \times 10^{20}\right)$ Smith-Waterman cell updates required

A cluster of 1,000 6 Ghz processors, where each processor computes 1 cell update per clock cycle, would take >3 years

Take a read:

CTCAAACTCCTGACCTTTGGTGATCCACCCGCCTNGGCCTTC

And a reference sequence:

>MT dna:chromosome chromosome:GRCh37:MT:1:16569:1 GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC GCAGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT ACAGGCGAACATACTTACTAAAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATA ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA AACCCCCCCTCCCCCGCTTCTGGCCACAGCACTTAAACACATCTCTGCCAAACCCCAAAA ACAAAGAACCCTAACACCAGCCTAACCAGATTTCAAATTTTATCTTTTGGCGGTATGCAC TTTTAACAGTCACCCCCCAACTAACACATTATTTTCCCCTCCCACTCCCATACTACTAAT СTCATCAATACAACCCCCGCCCATCCTACCCAGCACACACACACCGCTGCTAACCCCATA CCCCGAACCAACCAAACCOCAMACACACOCCOCACACtrtatactacctinccticctcana GCAATACACTGACCC ©CTCAAACTCCTGGATTTTGGATCCACCCAGCGCCTTGGCCTAA
 TCACCCTCTAAATCACCACGATCAAAAGGAACAAGCATCAAGCACGCAGCAATGCAGCTC AAAACGCTTAGCCTAGCCACACCCCCACGGGAAACAGCAGTGATTAACCTTTAGCAATAA ACGAAAGTTTAACTAAGCTATACTAACCCCAGGGTTGGTCAATTTCGTGCCAGCCACCGC GGTCACACGATTAACCCAAGTCAATAGAAGCCGGCGTAAAGAGTGTTTTAGATCACCCCC TCCCCAATAAAGCTAAAACTCACCTGAGTTGTAAAAAACTCCAGTTGACACAAAATAGAC tacGAAAGTGGCTTTAACATATCTGAACACACAATAGCTAAGACCCAAACTGGGATTAGA TACCCCACTATGCTTAGCCCTAAACCTCAACAGTTAAATCAACAAAACTGCTCGCCAGAA CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCATATCCCTCTAGAGG aGcCTGTtCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTTGCTCAGCCTATATA CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTACCCACGTAAAG ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTTTCTAC\&CCAG aAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGTA ACTAAG AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCA CCTCCTC
 CGTAA CTCAAACTCCTGCCTTTGGTGATCCACCCGCCTTGGCCTACOTGCATAATGAAG
 GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCT ACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATA GGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCAAGATAGAATCTTAG TTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTAAATTTAACTGTTAGTC CAAAGAGGAACAGCTCTTTGGACACTAGGAAAAAACCTTGTAGAGAGAGTAAAAAATTTA ACACCCATAGTAGGCCTAAAAGCAGCCACCAATTAAGAAAGCGTTCAAGCTCAACACCCA СTACCTAAAAAATCCCAAACATATAACTGAACTCCTCACACCCAATTGGACCAATCTATC ACCCTATAGAAGAACTAATGTTAGTATAAGTAACATGAAAACATTCTCCTCCGCATAAGC

How do we determine the read's point of origin with respect to the reference?

Match 1:

Which match is better?

Say match 2 is correct. Why are there still mismatches and gaps?

Take a read:

CTCAAACTCCTGACCTTTGGTGATCCA

And a reference sequence:

>MT dna:chromosome chromosome:GRCh37:MT:1:16569:1 GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC GCAGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT ACAGGCGAACATACTTACTAAAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATA ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA AACCCCCCCTCCCCCGCTTCTGGCCACAGCACTTAAACACATCTCTGCCAAACCCCAAAA ACAAAGAACCCTAACACCAGCCTAACCAGATTTCAAATTTTATCTTTTGGCGGTATGCAC TTTTAACAGTCACCCCCCAACTAACACATTATTTTCСССТСССАСTCССАТАСТАСТААТ CTCATCAATACAACCCCCGCCCATCCTACCCAGCACACACACACCGCTGCTAACCCCATA CCCCGAACCAACCAAACCCCAAAGACACCCCCCACAGTTTATGTAGCTTACCTCCTCAAA GCAATACACTGACCCGCTCAAACTCCTGGATTTTGTGATCCACCCAGCGCCTTGGCCTAA CTAGCCTTTCTATTAGCTCTTAGTAAGATTACACATGCAAGCATCCCCGTTCCAGTGAGT TCACCCTCTAAATCACCACGATCAAAAGGAACAAGCATCAAGCACGCAGCAATGCAGCTC AAAACGCTTAGCCTAGCCACACCCCCACGGGAAACAGCAGTGATTAACCTTTAGCAATAA ACGAAAGTTTAACTAAGCTATACTAACCCCAGGGTTGGTCAATTTCGTGCCAGCCACCGC GGTCACACGATTAACCCAAGTCAATAGAAGCCGGCGTAAAGAGTGTTTTAGATCACCCCC TCCCCAATAAAGCTAAAACTCACCTGAGTTGTAAAAAACTCCAGTTGACACAAAATAGAC TACGAAAGTGGCTTTAACATATCTGAACACACAATAGCTAAGACCCAAACTGGGATTAGA TACCCCACTATGCTTAGCCCTAAACCTCAACAGTTAAATCAACAAAACTGCTCGCCAGAA CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCATATCCCTCTAGAGG AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTTGCTCAGCCTATATA CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTACCCACGTAAAG ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTTTCTACCCCAG AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGTAAACTAAG AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCACCCTCCTC AAGTATACTTCAAAGGACATTTAACTAAAACCCCTACGCATTTATATAGAGGAGACAAGT CGTAACCTCAAACTCCTGGCCTTTGGTGATCCACCCGCCTTGGCCTACCTGCATAATGAA AAGCACCCAACTTACACTTAGGAGATTTCAACTTAACTTGACCGCTCTGAGCTAAACCTA GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCT ACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATA GGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCAAGATAGAATCTTAG TTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTAAATTTAACTGTTAGTC CAAAGAGGAACAGCTCTTTGGACACTAGGAAAAAACCTTGTAGAGAGAGTAAAAAATTTA ACACCCATAGTAGGCCTAAAAGCAGCCACCAATTAAGAAAGCGTTCAAGCTCAACACCCA СТАССТАAAAAATCCCAAACATATAACTGAACTCCTCACACCCAATTGGACCAATCTATC ACCCTATAGAAGAACTAATGTTAGTATAAGTAACATGAAAACATTCTCCTCCGCATAAGC

Which match is better?

Match 1:

Read
CTCAAACTCCTGACCTTTGGTGATCCA 11111111111111111111111 CTCAAACTCCTGCCCTTTGGTGATCCA

Reference

Match 2:

Read
 CTCAAACTCCTGACCTTTGGTGATCCA СТСАAACTCCTGACCTTTCGTGATCCA

Reference

Is there any way to break the tie?

JOHNS HOPKINS
BLOOMBERG
SCHOOL of PUBLIC HEALTH

- Base (sequence) quality

Represents the chance that the sequence machine made an error. Produced by the sequence machine (possibly with some post-processing, "calibration"). The 'Q’in FASTQ files.

- Alignment quality

Represents the chance that the alignment is wrong. Produced by the alignment software.

Does base quality really reflect the chance of a sequence error?

Take a read:

CTCAAACTCCTGACCTTTGGTGATCCA

And a reference sequence:

>MT dna:chromosome chromosome:GRCh37:MT:1:16569:1 GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC GCAGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT ACAGGCGAACATACTTACTAAAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATA ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA AACCCCCCCTCCCCCGCTTCTGGCCACAGCACTTAAACACATCTCTGCCAAACCCCAAAA ACAAAGAACCCTAACACCAGCCTAACCAGATTTCAAATTTTATCTTTTGGCGGTATGCAC TTTTAACAGTCACCCCCCAACTAACACATTATTTTCСССТСССАСTCССАТАСТАСТААТ CTCATCAATACAACCCCCGCCCATCCTACCCAGCACACACACACCGCTGCTAACCCCATA CCCCGAACCAACCAAACCCCAAAGACACCCCCCACAGTTTATGTAGCTTACCTCCTCAAA GCAATACACTGACCCGCTCAAACTCCTGGATTTTGTGATCCACCCAGCGCCTTGGCCTAA CTAGCCTTTCTATTAGCTCTTAGTAAGATTACACATGCAAGCATCCCCGTTCCAGTGAGT TCACCCTCTAAATCACCACGATCAAAAGGAACAAGCATCAAGCACGCAGCAATGCAGCTC AAAACGCTTAGCCTAGCCACACCCCCACGGGAAACAGCAGTGATTAACCTTTAGCAATAA ACGAAAGTTTAACTAAGCTATACTAACCCCAGGGTTGGTCAATTTCGTGCCAGCCACCGC GGTCACACGATTAACCCAAGTCAATAGAAGCCGGCGTAAAGAGTGTTTTAGATCACCCCC TCCCCAATAAAGCTAAAACTCACCTGAGTTGTAAAAAACTCCAGTTGACACAAAATAGAC TACGAAAGTGGCTTTAACATATCTGAACACACAATAGCTAAGACCCAAACTGGGATTAGA TACCCCACTATGCTTAGCCCTAAACCTCAACAGTTAAATCAACAAAACTGCTCGCCAGAA CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCATATCCCTCTAGAGG AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTTGCTCAGCCTATATA CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTACCCACGTAAAG ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTTTCTACCCCAG AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGTAAACTAAG AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCACCCTCCTC AAGTATACTTCAAAGGACATTTAACTAAAACCCCTACGCATTTATATAGAGGAGACAAGT CGTAACCTCAAACTCCTGGCCTTTGGTGATCCACCCGCCTTGGCCTACCTGCATAATGAA AAGCACCCAACTTACACTTAGGAGATTTCAACTTAACTTGACCGCTCTGAGCTAAACCTA GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCT ACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATA GGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCAAGATAGAATCTTAG TTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTAAATTTAACTGTTAGTC CAAAGAGGAACAGCTCTTTGGACACTAGGAAAAAACCTTGTAGAGAGAGTAAAAAATTTA ACACCCATAGTAGGCCTAAAAGCAGCCACCAATTAAGAAAGCGTTCAAGCTCAACACCCA CTACCTAAAAAATCCCAAACATATAACTGAACTCCTCACACCCAATTGGACCAATCTATC ACCCTATAGAAGAACTAATGTTAGTATAAGTAACATGAAAACATTCTCCTCCGCATAAGC

Which match is better?

Match 1:

Reference
Match 2:

Reference

JOHNS HOPKINS
BLOOMBERG
SCHOOL of PUBLIC HEALTH

Alignment

Read 1:

Best match:
Read

AGCTTATATGCTTTTCAGAGCGATACTAAAACCNAACCTCA |||||||||||||||||||||||||||||||| ||||||| agctiatatgctittcagagcgatactaiaicctaicctca Reference

Second-best match:
Read

AGCTTATATGCTATTTCAGAGCGATACTAAAACCNAACCTTA
 AGCTTATATGCT-TTTCAGAGCGATACTAAAACCTAACCTCA Reference

Read 2:

Best match:
Read
CTCAAACTCCTGACCTTTGGTGATCCACCCGCCTNGGCCTTC
||||||||||| |||||||||||||||||| |||||
CTCAAACTCCTG--TTTGGTGATCCACCCGCCTTGGCCTAC Reference

Second-best match:

Read

CTCAAAGACCTGACCTTTGGTGATAAACCC-----GCCTNGGCCTTC
\|\|\| \|\|\| \|\|\| \|\| \|\| \|\|\| \|\|\|\| Reference

For which read are we more confident that the best match is correct?

JOHNS HOPKINS
BLOOMBERG
SCHOOL of PUBLIC HEALTH

Alignment and Bioconductor

These days, most alignment is done using external tools.
However, it is worth knowing about

matchPDict
matchPWM
pairwiseAlignment

in Biostrings.

OHNS HOPKIN
$\underset{\text { SCHOOL of PUBLCLC HEALTH }}{\text { BL }}$
CHOOL of PUBLIC HEALTH

Popular aligners

- Bowtie
- BWA(-SW)
- MAQ
-SOAP2
- Novoalign

Many programs support more than one alignment 'mode' depending on command line settings.

The choice of settings is often unclear.

Which aligner is best?

- Two issues: (1) which aligner is the best implementation of a given policy? and (2) which policy is best?
- There has been surprisingly little investigation of which policy is best on real data. It is a hard problem.
- Most aligners have been evaluated in terms of speed and completeness (\% of reads mapped).
- Completeness is probably the wrong metric.
- Some evaluation on simulated data, but we need more.
- Different aligners (policies) produce different end results, sometimes dramatically different.
- Answer also depends on "for what".

Fileformats

- Input

FASTQ, FASTA, QSEQ, SFF

Vendor specific formats (like CSFASTA+QUAL)

- Output

BAM/SAM, program-specific format
Tip: Learn the UNIX shell, especially piping

```
gunzip -c INPUT.fastq.gz | \
    bowtie -m 1 -v 2 -p 4 -y --trim3 10 hsapiens_hg19 - | \
    gzip -c > OUTPUT.bwt.gz
```


name sequence quality scores

Interlude

Now for some perspectives on aligning RNA-seq data.

JOHNS HOPKINS

Junction reads

Junction reads, zoom

Mapping transcripts

JOHNS HOPKINS

Mapping reads to the transcriptome

The basic approaches

a
De novo assembly of the transcriptome

b
Map onto the genome
 to record splices

C
Map onto the genome and splice junctions

Splice junctions sequences from either annotations or inferred

From Pepke (2009 Nat Methods)

Popular tools:Tophat/Cufflinks, GSNAP

